Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Dementia and Neurocognitive Disorders ; : 93-102, 2016.
Article in English | WPRIM | ID: wpr-111906

ABSTRACT

Primary progressive aphasia (PPA) is a clinical syndrome diagnosed when three core criteria are met. First, there should be a language impairment (i.e., aphasia) that interferes with the usage or comprehension of words. Second, the neurological work-up should determine that the disease is neurodegenerative, and therefore progressive. Third, the aphasia should arise in relative isolation, without equivalent deficits of comportment or episodic memory. The language impairment can be fluent or non-fluent and may or may not interfere with word comprehension. Memory for recent events is preserved although memory scores obtained in verbally mediated tests may be abnormal. This distinctive clinical pattern is most conspicuous in the initial stages of the disease, and reflects a relatively selective atrophy of the language network, usually located in the left hemisphere. There are different clinical variants of PPA, each with a characteristic pattern of atrophy. Clinicoanatomical correlations in patient with these variants have led to new insights on the organization of the large-scale language network in the human brain. For example, the left anterior temporal lobe, which was not part of the classic language network, has been shown to play a critical role in word comprehension and object naming. Furthermore, patients with PPA have shown that fluency can be dissociated from grammaticality. The underlying neuropathological diseases are heterogeneous and can include Alzheimer's disease as well as frontotemporal lobar degeneration. The clinician's task is to recognize PPA and differentiate it from other neurodegenerative phenotypes, use biomarkers to surmise the nature of the underlying neuropathology, and institute the most fitting multimodal interventions.


Subject(s)
Humans , Alzheimer Disease , Aphasia , Aphasia, Primary Progressive , Atrophy , Biomarkers , Brain , Comprehension , Dementia , Frontotemporal Lobar Degeneration , Memory , Memory, Episodic , Neuropathology , Phenotype , Temporal Lobe
2.
Protein & Cell ; (12): 477-486, 2011.
Article in English | WPRIM | ID: wpr-757074

ABSTRACT

Mutations in the Fused in sarcoma/Translated in liposarcoma gene (FUS/TLS, FUS) have been identified among patients with amyotrophic lateral sclerosis (ALS). FUS protein aggregation is a major pathological hallmark of FUS proteinopathy, a group of neurodegenerative diseases characterized by FUS-immunoreactive inclusion bodies. We prepared transgenic Drosophila expressing either the wild type (Wt) or ALS-mutant human FUS protein (hFUS) using the UAS-Gal4 system. When expressing Wt, R524S or P525L mutant FUS in photoreceptors, mushroom bodies (MBs) or motor neurons (MNs), transgenic flies show age-dependent progressive neural damages, including axonal loss in MB neurons, morphological changes and functional impairment in MNs. The transgenic flies expressing the hFUS gene recapitulate key features of FUS proteinopathy, representing the first stable animal model for this group of devastating diseases.


Subject(s)
Aged , Animals , Humans , Aging , Genetics , Metabolism , Pathology , Amyotrophic Lateral Sclerosis , Genetics , Metabolism , Pathology , Animals, Genetically Modified , Disease Models, Animal , Drosophila melanogaster , Genetics , Metabolism , Gene Expression , Microscopy, Electron, Scanning , Motor Neurons , Metabolism , Pathology , Mushroom Bodies , Metabolism , Pathology , Mutant Proteins , Genetics , Metabolism , Mutation , Photoreceptor Cells, Invertebrate , Metabolism , Pathology , Plasmids , RNA-Binding Protein FUS , Genetics , Metabolism , Recombinant Fusion Proteins , Genetics , Metabolism , Retinal Degeneration , Pathology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL